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1. INTRODUCTION

1.1 Background

In Part I of this report, an infinite series technique for analytically des-
cribing the hydrodynamic phase of the hypervelocity impact Processﬁris deve}l-w-m
oped and applied to &e case of a one-dimensional impact under ther—assumpti’égs
of a Tigid peneirator and a constant shock demnsity. The application of the methe
od to the m&f? generrarl’caSe of sphetica;l target flow with zrarcompre;sible pem;_

trator and a variable shock density is treated herein.

The purpose of the one-dimensional study is the demonstration of the feasi-
bility of the series solution technique. As such, several important physical
effects (geometric divergence of the flow-field, penetrator compressibility,

and shock density variation) were not considered initially in order to concen-.

trate on the fundamental aspects of the solution technigue with as simple a mod-~-
el as possible. Having established the usefulness of the method, it is now ex-
tended to include the effects necessary to yield a physically detailed, analytical

description of the hydrodynamic phase of hypervelocity impact.

1.2 Ob!'egtives

__ The objectives of the Partn anal#ii'suar,éifv' o
1. An analytical series solution of the hydrodynamic phase of impact based
on a model which includes: 7 |
a. spherical target flow
b. penetrator compressibility

c. variable shock density

2. A determination of the %élation;iip between infinite 'Vtarget crater depth




“fore, ideal fluid behavior is assumed througheout the variable shock flow proc

and impact velocity based on the derived series solution.

1.3 Apprecach

The spherical impact of 2 compressible penetrator and an infinite target is

investigated utilizing the infinite series technique developed in Part I. As, he-

ess. Target strength is iniroduced as a final condition to terminate the crater

growth. -
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2. ANALYSIS

2.1 Theorectical Model

2.1.1 Physical Basis

The physical basis for the theoretical model to be discussed is iuustr‘at‘etri
byr the unpact rcr;x"ater éhown in Figuré la. » The significént features of the im-
pact {(aluminum on copper) are the hemispherical nature of the crater and the
fairly uniform coating of the penetrator over the crater surface, both of which
are consistent with the fluid dynamic picture of hypervelocity impact. As the
pressure and temperature levels decay with time, strength becomes a major
factor in controlling the flow of target and projectile material. Eventually the
flowing material "'freezes' due to the onset of internal resistive forces which

limit gross macroscopic flow.

All craters are not as symmetric and uniformly coated as that pictured in
Figure la. In certain instances the penetrator may mix with the target crater
material, a phenomena which occurs when copper impacts aluminum,as shown
in Figure 1b. This latter effect may be related to a flow instability arising
from the relative differences in density between the j)eﬁetrater and target. In
this investigation the more regular type of behavior of Figure la will be exam~ - -

2.1.2 Physical Idealization

2.1.2.1 Instant of Impact

Based on the preceding considerations, the instant of impact is idealized

as shown in Figure 2. It is assumed that immediately upon impact the penetira-

tor and a 1ayef bf impacted {arget material form two concentric flowing
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(la) Aluminum on Copper

Fig. 1. Examples of typical hypervelocity impact craters.
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Fig. 2. Thgiriﬂealiz;;;ion of the penetrator-target system at the instant of impact.
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hemispherical shells. The particle velocity (which is purely radial) and pres-

sure within each shell are uniform; their values are equal to those at the impacted

target layer shock {ront,
V'E Uimper = #%(0) , )

ﬁmgcr = £,

Application of the momentum and energy conservation laws yields unique
values for the impacted target layer mass, My, and the impact particle velocity
which are consistent with the postulated flow-field. Thus, using the notation of
Figure 2, conservation of momentum in the z direction requires that

e V = ™ _?[ +m U
Z 2’ (3)
the factor of 1/2 on the right side of the equation arising from the fact that the

deformed penetrator and impacted target layer are flowing radially.

Energy conservation necessitates that

z i 3
m V = Me 7 - 7 . ) ;>
"z e m Y 4 Gegym YT, (4)
P 2 ra ]

where ¢ (defined as the "kinetic energy fraction’) is the fraction of the initial
penetrator kinetic energy which appears as deformed penetrator and impacted
target tayer kinetic energy.* Equations (3) and (4) can be solved fcr’mf , the

impacted target layer mass, and &’ , the impact particle velocity. Thus,

v v (5)

W
Nleg

F

i-i}nn )
r /0F (&)

* ¢ is assumed independent of the penetrator kinetic energy.

6

(2) .
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Since, for this model, there is no loss of target mass, the initial crater

radius follows as

PN
o
L—y

2 Ta’p e gn, = (2 -
%WQF~WL,-<% V) mp

or

* - (FER])T G

It should be emphasized that the effects of penetrator compreséibility #;Id
material properties at the instant of impact are accounted for in this formulation.
Thus, Z can be obtained from a rigorous analysis of the one-dimensional im-
pact between infinite slabs, one of the target material and one of the penetrator
material. 2 For example, for similar material impact, g =1/2. With g cal-
culated in the manner, Equations (5), (), and (7) give a reasonable representa-
tion of the state of affairs existing at impact. (For a one-dimensional impact, 7
the model would be perfectly rigorous. Physically, it would depict the s1tuat1cm

exmting at the instant that the penetrator shock reaches the back face of

the penetrator.)

2.1.2.2 After Impact

As just shown, there is a unique impacted target layer mass, ixﬁpa&
partu:le velocity, and initial crater radius associated with the postulated 1mt1a1
1mpact flow-—ﬁeld At the mstant of unpact the ﬂow-ﬁeld shown in Fxgure 2 :
is equivalent to that which would arise if a "rigid" hemispherical shell (deﬁned
as a"rnodified—penetratof) with a mass

M‘f EMee M, = A m, = sz'a?"/ (8)
/2-3¢
initial outer radius A  , and wniform radial velocity 7/ impacted a target with

initial crater radius o. (see Figure 3a). The modified-penetrator is "rigid"
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(3b) AFTERIMPACT

__Fig. 3. The modified-penetrator idealization for all times after impact.
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in the sense that the initial particle velocity over the hemispherical impact

surface is ¢/ , the impact velocity of the modified-penetrator. *

It is postulated that for all succeeding times after impact the modified-

penetrator acts as a deformable, hemispherical shell piston which is in con-

stant bearing contact with the target (see Figure 3b). Its velocity distribution

is always radial. For purposes of computing its equatrion of motion, i:hey vel-

ocity of the target-modified-penetrator hemispherical interface is taken to be
that of the modified-penetrator center-of-mass. As discussed in Part I (see

Section 3.4.2) this latter approximation should be of higher-order significance.

2.2 Mathematical Formulation

2.2.1 Fluid Dynamic Equations

As in the one-dimensional analysis, it is assumed that

1. The flow is inviscid and adiabatic; real fluid effects, i.e., viscosity and
heat transport, are absent except in the advancing target shock front.
2. Strength effects are negligible during the flow process.**

3. The adiabatic pressure-density relationship is given by

-¥
70/ = CONSTANT, o B £ )
For the assumed spherical flow-field, it is also convenient to use the La-

grangian form of the fluid dynamic equations. The particle parameter is now

defined as

m = Z‘S‘O Eréa_ ai] h 7 (10)

*In the rigid penetrator, one-dimensional analysis, the initial particle velocity
% (0,0) is equal to the impact velocity of the penetrator, V.
**Strength is considered, however, in evaluating the final crater radius.




where fo and v "are the undisturbed target density and initial radius of the
particle, respectively. (Figure 4 illustrates the flow-field geometry notation. )
The Lagrangian form of the fluid dynamic equations appropriate for spherical
flow is |

Continuity: ()

Momentum: 2 |

7 £ad o™ {12
Energy:
: (13)

Equations (11) and (12) differ from their one-dimensional counterparts (Equa~

r
vergence of the pressure and velocity fields.

2.2.2- Boundary and Initial Conditions

2.2.2.1 Initial Conditions

From the idealization of Section 2.1, at the instant of impact the radius

of the modified-penetrator, target crater, and shock front are all equzl to a.

The initial velocity of the modified-penetrator is the impact particle velocity. Thus,

|
‘ l tion (30) and (31) of Part I) in the -—. factor which accounts for spherical di-

Bl  veo=K():R(®=a ey
B : ‘5‘%‘ w2 X(G} = ?)/‘ - : ek
ﬁl | - D
l‘ 2.2.2.2 Boundary Conditions
. Target-Modified-Penetrator Interface
!
l The flow is spherical; hence, only the z-component of the modified-
- penetrator momentum is different from zero. The rate of change of this
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Fig. 4. The Lagrangian representation of the spherical flow-field.
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momentum is governed by the z-component of the pressure force acting at the
target-modified-penetrater interface. Thus,
L) z .
Mp X = - f(o ey X ,
A : . (1)
2
Since

rit = (1)

2%r

= -2 riot) Plot)
attlot Mp e

Target Shock Front

The shock density is treated as a time varying quantity. From the

experimentally derived shock velocity expression

. w* = u(mee) = K-c |
&

and the rigorous shock pressure relationship p¥=p™ £ ., it follows that

(19)

r fe] . .
70 .E/(mfﬁj‘—’-_i%_(i?t-CR)_ (20)
' : ; son. .+ =L [T L=yl
The form of the corresponding shock density equatxon,f, -yo{i [4 ¢ ﬁ')_i};
does not allow for a series representation. A form which does yield a series

expansion and which is a good approximation to the pressure-density variation

along a Hugoniot curvel® * jq

P (PP | (an)

where 7% is generally larger than the adiabatic exponent ¥ .*

* Tt should be emphasized that Equations (9) and {2]1) represent two distinct
phenomena. Equation (9) refers to the pressure-density relationship of a
given particle during adiabatic expansion. Equation (21) relates the shock
density to the shock pressure as the shock front moves into the target
**Hugoniot data for various metals is given in Reference 5.

(37) o




Equations {19), {20), and (21) are three equations for the shock velocity,

pressure, and density which account for the variable shock density.

2.3 MNethod of Solution

The solution of Equations (11), (12), and (13) subject to the initial and bound-

ary conditions specified by Equations (14), (15), {18), (19), (20) and (21) is pre-

sented in this section. Analytical details are presented in the Appendix.

2.3.1 Series Expansions

In complete analogy with the one-dimensional analysis, it is assumed that

the flow-field distributions can be expanded in terms of powers of the impact

density ratio, € , defined as

€=z P°, (2D
Fineacr | =

where f' is the density of the initial impacted target layer described in Sec-
tion 2.1. Thus, for a specified target material and penetrator mass we seek

solutions of the form

Particle Position:  y(mt¢) = < ~
7 (m,t ¢) io Yol t)€ . (23)

Shock Position: - Rite) = = : B T

| Rt ¢e) i‘ Ralt) € (2")
Modified-Penetrator Position: X(t,é) T ; X (t) e™ (25)

mes
Pressure: £(mte) = %o Falmt)e™ (24)
- o ‘)
Density: 7 P(mite) = S Pulmitje * ,
m=z=ao s {(27)




—
T

2.3.2 Coefficient Differential Equations

Substitution of Equations (23), (26), and (27) into Equations (11), (12), and
(13) yields a system of partial differential equations for the coefficients in the

flow variable series. For the zeroeth and first-order coefficients we have

‘-J - O grj - ) , [
S ) = - Anr ¢ {(28a,b)
2 __rb";,) f o 2
arl -—E g 2_& - __'f—- 2 ra_rL - r}
L s m 7 o z9a
>m o . 5t ( b
2 -9
EAKIAR 2 (Lo
st g 7 . (304a,0)

These equations are readily integrable. Thus,

(mt) = hit) RS 1)

L(mt)= —1;: o+ (o) (32
Bime) = £ i

A 33

6,(m) 7

' m
r; . = } : o
(mt) £ e dm + Y (ot) o — (34)

"
. A . 2
F(mt): rc,_{(z::r‘._ igr;-)d% + j?(o‘t) (35}
a

£imz) = _fe_(_ﬁ. + &(an)),

¥\ £ (3¢)

14




4

where 6 mjand £ /) are functions of 9 to be specified by the boundary conditions.
2 { ™) o {m P Y ¥y

i

Higher order terms can be calculated. However, experience with the one-
dimensional solution indicates that the second-order contribution to a three
term series is only about 5% shortly after impact. Hence; for the spherica:ir
flow analysis a similar relationship between the magnitude of the first 3 terms

is postulated, so that only the first 2 series coefficlents are e#aluated.

2.3.3. Flow-Field Solution - T —

2.3.3.1 Truncated Series Expansions

Following the procedure developed for the one-dimensional analysis, the
series coefficients given by Equations (31) through (3b) are obtained by applying

the initial and boundary conditions and solving for the functions of integration

ot} ﬁ(a,{)j G (m) (i<0,)
This procedure also yields R. and R, , the first two shock’ poiiﬁou series

coefficients,

The radial location of a fluid particle at the target-modificd-pene}rétor

interface is ecqual to that of the penetrator, i.c.,

rt.e) = X(t ¢

ltl+ netier = Xalthe Xi(the s, = @7y

and, equating coefficients of like powers of €

i
|
|

ro(t) = X.it) (38a)
ro(eci= X (t) (34b)

’

Hence, as for the one-dimensional flow, the modified-penetrator position series

coefficients are derivable from those of the particle position series.
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The detailed evaluation of the various series coefficients is given in
the Appendix. Table ] presents the first two terms of the series expansions.
As can be seen, to calculate the target flow-field for a given penetrator im-

pact velocity, V, and mass, My , one needs only to specify the target's undis-

turbed density, f © , adiabatic exponent, ¥ , Hugoniot exponent, X , adiabatic

bulk sonic velocity, ¢ , and shock velocity constant, ,.g ,and the impact par=~

-~
ticle Velocity-density ratio function Zf(c\ . (The evaluation of 2/(6

te A cmrammdd
.............. €} iS5 aiscussed

~
n

in Sub-section 2.3.3.2.) The secondary properties f/ K, and¥%

and {3 are related to the target properties through the curves of Figures 5,

6, and 7, respectively. The kinetic energy fraction, % .+ is calculated,as dis~
cussed previously, from the one-dimensional impact of infinite slabs, one of

the target material and one of the penetrator material.

It is useful to compare the present results with those developed for the
rigid penetratof, one-dimensional impact at constant shock density.  For this-
purpose, it is sufficient to restrict the comparisons to the zeroeth order terms
as the first and higher order terms aCCOU;It for the variation in the flow-field
levels with impact velocity. The basic characteristics of the flow process, i.e.,
the amount of geometric divergence and shock density variation, are reflected

in the form of the leading term of the shock position scries.

W"J'Vhenﬁcrofhparing the Hone-dimensional and spherical flow analyses, it is
instructive to note that for explosive shock flows at constant shock density, the
shock front motion varies with flow-field geometry as

/7

R=1

where . =3, 4, and 5 for one-dimensional, cylindrical, and spherical flows,

3
P

L

i
(3

respectively. For one-dimensional flow with a constant shock density, Equa-

tion (61) of Part I gives the leading term of the shock position series as

e
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R, « 3 <1 (one-dimensional, constant shock density) (#)

where the reduction of the exponent from 2/Xas predicted for one-dimensional
explosive shock flow) to 1/2 is due to the fact that the Part I analysis allows
for arco‘nrf;inuous‘,_ deposition of penetrator energy into the target flow-field as
contrasted to the instantaneous deposition postulated for the explosive shock |

model.

In complete analogy with the reduction of exponent when comparing one-

dimensional and spherical explosive shock flows, R, for the present spherical

flow is%*%*
_ Wy .
Re = .4 a9 + et - (4-1)a (spherical, variable shock (%)
density) ;
for early times, ]
'If + ‘/y ( T omy

& so>-~rical, constant shock .
Roxg Tt density) (#2]

That is, the exponent is reduced from 1/2 for the pl'ane case (Lauation (40) ) to
1/4 for the corresponding early time spherical case. Since the density is rcla=-
tively constant during the early part of the impact process, Equation {42) is also

.’.

the constant shock density spherical flow solution.
The effect of target shock density varistion is given by the second term

on the right side of Equation {(41). As time increases, this becores the ma-

jor contribution to [k, *** thus, K — g.->c, i.e., the »shock velocity

* = -

: = A
aﬂhnf by '"{:! .

ek = ,
%;rnumh it i—Z—i}—: :

*%% The term (1- o )a serves to satisfy the initial condition R, =a..

+ 1t should also be noted that for corresponding spherical flows, the exponent
of the present analysis is smaller than that corresponding to an explosive
shock model, viz., 1/4 compared to 2/5, in complete analogy with the plane
case results.
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approaches the adiabatic bulk sonic velocity. Hence, the removal of the one-

dimensional and constant shock density assumptions results in a shock front
equation which predicts sonic speed spherical flow at large times and constant

shock density spherical flow for early times.

The first order terms of Table 1 become approximate as 9 >o. These

1

expressions are valid for values of 94 less than 100. This restriction is nec-
essary to obtain an accurate, closed form expression for R, and, hence, the

other first order coefficients. *

At the instant of impact the retention of only the zeroeth and first order
terms leads to deviations (which increase with € ) from the impact values of
the flow-field properties. However, the effect of the second and higher order
terms decay quite rapidly with time**, thus rendering the two term series |

quite accurate over the major portion of the g range of physical interest.

2.3.3.2 Impact Particle Velocity-Density Ratio Function

In the impacted target layer, the uniform particle velocity and pressure

are given by (see Equations (1) and (2))
N u*¥(oy = (i- 9) ="
(o) = (i-€) R(o) =% 43

fx(O) =p,(r-€)R (o) z'}?nmcr/ | | ("_ng

* The evaluation of R, 1s fully discussed in Section A 4,

*% As illustrated by the three term Part I analysis.

~l
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so that

o G/t
70()’ wmt.r:‘“—/’i;‘g" (457
The tareet Huconiot function can be introduced to provide a second relation-

g g P

ship between impact pressure (i.e., initial shock pressure) and impact den-

sity ratio (i.e., initial shock density), viz.,
Plo) = File) = //(/”/’/’P) (%)

4
Eliminating #p)from Equations (45) and (46) yields

r'// Vo= #WHFA—»P o s
gte) = JUTE .3.-_;_; : #7)

Physically, an € value of zero is not realizable as it corresponds to

an infinite shock density and a corresponding infinite shock pressure and im-
pact particle velocity. However, as discussed in Section 3.3.1 of Part I, we
seek series solutions to the differential equations for the range 0< ¢ £ 1,
recognizing that the differential equations and their solutions are not correct
physical representations for € =0. In precisely the same manner,a \'E"’zf‘é,‘curve
is constructed from available Hugoniot data and the resulting curve extrapolated
to zero. For € > 0, the generated 7/2&} curve is a valid representation of the
relationship between impact particle velocity and density ratio. Each target
material has its own unique curve which folloﬁvs directly from its Hugéniof data

through the application of Equation (47).

The evaluation of the coefficients of the power series representation of

N
~

3 .
€), i.e.,

/L/ } :&’jr%:g-=4 (f.‘;)

pog

(\‘

follows directly from the curve itself. Thus,
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At this point it is well to emphasize that the impact particle velocity, 4

T T
£ !

‘and the actual penetrator impact velocity V, are related through Equation {5), .
i.e.,
V':. g V’
N , z
The factor g /2 accounts for the spherical flow-field and the penetrator com-
pressibility.®* For a given penetrator impact velocity, V, the impact particle
velocity, W , follows from Equation (5); the corresponding impact density

ratio, € , is obtained from the mé} curve specified by Equation (47).

¥

f B T
b P ; : L X | : '

* In the rigid penetrator, one-dimensional analysis, & = V.
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3. NUMERICAL CALCULATIONS

The purpose of this section is to illustrate the application of the flow field
series equations by calculating the depth of penetration-impact velocity re-
lationship for aluminum-aluminum impacts. The procedure presented is
quite general and is not restricted to similar material impacts. The only
calculational simplification offered by a similar material impact {within-the — -
framewrorkr of the present model) is that g , the kinetic energy fraction, is
known to be 1,/2; hence, the one~-dimensional, infinite media impact calcula-

tion need not be made.

3.1 Material Properties

The specification of the values of the material properties required for the
calculations is described in this section. A summary table is given in Sub-

Section 3.1 .Sf

3.1.1 2/(£’Curve

From Eguation (47),

Ve = L/(T:ETZ; (a
)0

The Hugoniot curve for Aluminum, ie., £/()is taken from Reference 4 and is

shown in Figure 8. Hence,

) \ e V2
Ustjzec = (U’ﬂ(ﬂm:(w‘fx’/o"/éf/ff‘—ﬁ’z.s\’
S.23 5/43/5L2 /i
or 4

(e} = 2c 000 l";(l’E/}ﬁ(t’)
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A

This expression is presented in Figure 9. The upper limit impact velocity of
physical interest is taken to be 200,000 ft,/'sec. Since 7 =V /4 for similar
material impacts, the corresponding upper limit impact particle velocity, 7.
is 50,000 ft/sec. A smooth curve through the calculated values of v up to

50,000 §t/sec is extrapolated to € =0 to give
VYo = 200 002 §t/sec.
The extrapolated portion of the curve is shown dotted in Figure 9.

The value of %/ is obtained directly from the curve as (see Equation 49b)

v, = ,‘.’/_.:/ = - 692 50> 55/:@.:.}
gd& f¢eg=0
so that
Y - 3.4

3.1.2 X and ¥

As can be seen in Figure 8, the Hugoniot curve can be well represented

by

or

prp* AL cowsTanT |
for € wvalues greater than 0.37 (corresponding to 7" » 50,000 ft/sec). The

Hugoniot exponent, # , is given by

=43,

The adiabatic exponent, ¥ , varies significantly more than X with €

Reference to Figure 8 shows the changé' of ¥ with initial state. Thus, for
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flow-ficld calculations.

initial pressures greater than 40 megabars, the compressed target expands
adiabatically from its initial shocked state as if it were a gas. That is ¥

is about 1.0. It is an interesting fact that only when the initial shock pres-~
sure is considerably smaller, e.g., levels of about ] megabar or less, does
the adiabatic exponent approach the larger values normally associated with

metallic state adiabatic expansion, say 5 or b, or thereabouts.

For the purposes of the present calculation, an average value of ¥ is
utilized. At an € = 0.37 (corresponding to 7~ =50, 000 ft /sec), the initial shock
pressure is 10 megabars. The corresponding value of ¥ is 3.07 (see Figure 8).
For 7 =10,000 ft‘,«""sec)the initial shock pressure is about 1 megabar and the

6

corresponding value of ¥ is 6. Hence the average value of & over the

range of impact particle velocities is

Xs(3.§7+6)/2-
¥= ¥53.*

3.1.3 xg and C

From Reference 7, the appropriate values of &£ and ¢ for aluminum are

£ = A57

C = /7 ¥ SEfiscc .

3.1.4 Secondary Properties: f,‘.#, Ko, Wi ord T

From Figure 5 for ¢/% =17,400/200, 000 = 0.087, and 2 =1.37,

§=2.13
*It should be noted that the analysis is carried out under the assumption that ¥
is constant, The results of the plane case study indicate that indeed the shock
motion is relatively insensitive to values of ¥ . However, for slightly increased
accuracy, the value of ¥ can be allowed to vary with € in making the numerical
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Lastly, from Figure 7, 4 f{; /(12-3¢ )=1.30, so that, since § =0.5

W:; = 254

‘
A = -

From Equation(A43),

i

O = i 4 ;} b — ,;.911_
4 I 472 ’
or
¥, =425

3.1.5 Summary of Material Property Data

The values of the material properties necessary for calculating Al-Al
impacts are given in Table 2.

TABLE 2 - MATERIAL PROPERTY DATA FOR ALUMINUM-ALUMINUM
IMPACTS

Primary Properties Secondary ;Pr operties-

g =0.5 £ =29
P£° =5.23 slug/ft3 2 =0.012

Y. = 200,000 ft/sec Kz =1.04

Y, = -089, 000 ft/sec Kz = 3.586

¥ =4 53 7 =4.28

K =4.80

A =1.37

¢ = 17,400 ft/sec — -




3.2 Solution Constants

Using the data of Table 2, the solution constants given by Equations (A57)

through (Ae3) are readily calculated. The numerical values are summarized

in Table 3.

TABLE 3 - SOLUTION CONSTANTS FOR ALUMINUM-ALUMINUM IMPACTS

i; = -0.114 j, =0.79 Wy =0.055
Lz = 0.49 Az = -0.004 Wi = 0,01
Z:=5.8x10"53 A= 1.26

2. = .5.88x10"3 Ar=0.28 C, =-0.323
F:= 0.0515 A= -1.03 Co=-1.34
L.z 4.96x10"4 j\. =0.47

L= -3 £,= it N

7= 5.76x10 7=0.51 ¢ \iz-5z,; =-0.00180

3.3 Depth of Penetration - Impact Velocity Relationship

In order to evaluate depth of penetration, a cratering-cessation criterion
is required. In accordance with the discussion of Section 4.3 of Part I, the
crater depth is defined as the position of the shock front ’ (defined as f\‘; )
at the instant the the shock pressure falls below 0-", the dynamic yield stress.

Hence, K. is calculated as follows:

1. For a given impact velocity, V, and corresponding ¢ , R=k.+k e and
R=Kk,«% : , the transient shock position and velocity histories, respectively, are

calculated. *

-

2. From Egquation (20), the velocity (defined as X. ) corresponding to -~ is

*The generalized time, 3 = (+ #7:f 1s used as the time variable for convenience.
= :

T




+

calculated.

3. The time (defined as gc. Jcorresponding to 'Rc is obtained from the tran-
sient shock velocity history calculated in Step 1.

4. The shock radius at the time ., which is by definition the depth of
penetration according to the stated cratering-cessation criterion, follows di-
rectly from the transient shock position history of Step 1.

5. This sequency of steps is repeated for several values of £ to determine

the general relationship between depth of penetration and impact velocity.

3.3.1 Transient Shock Position and Velocity Histories

Using the solution constants of Table 2, K./x is calculated as a function of g
by means of Equations (A64) and (A56). The leading term of the shock series,
R,/1, follows directly from Equation (A31). The resultant shock front motion

for aqj € is simply

RZE:.

+.

A e ']

-

Figure 10 shows R(g) for ¢ values of 0.0,0.35,0.4, 0.45 &O0H*

The corresponding shock velocity, obtained by differentiating Equations (ASI)

and (A64) and noting that

k= dhdy oK oyz (&
gt _ij 52 dg e ' =

*The corresponding impact particle velocities, 77 , follow directly from Fig-
ure 9. The impact velocities, V, are just 4 times these values. Thus,

£ Y

0.35 54,000 2lo, 000
0.40 43,000 172, 000
0.45 34,000 136,000

0.00 15,000 ©0, 000

S
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is shown in Figure 11 for the various values of € . It should be remarked
that for values of g less than 10, the two term approximation for K deterior-
ates for the € values chosen. That is,more than 2 terms are necessary to
accurately describe the early time behavior. Fortunately, however, the ef-
fect of the higher order terms dies out rapidly* and it is possible to draw a
smooth curve though the values of IQ for g > 10 to the true impact shock ...
veiocity obtained from Equation {13). For g values close to 100, the analytical
approximations used in deriving K, in closed form break down. Hence for
values of g greater than 50, the Ié curves are extrapolated rather than calcu-
lated. As mentioned previously, and as will be shown, the cratering process
is terminated before g reaches 100, so that this small extrapolation introduces

no uncertainty into the calculation.

3.3.2 Calculating P/D

Figure 12 illustrates Equation (20) in the low pressure and velocity range.
To be specific, consider the case where the dynamic yield stress is 0.01 Mb.
The corresponding shock velocity is 17,700 ft/sec. From Figuresll and 10,

the corresponding cratering times and shock radii are as given in Table 4.

Lastly,r éince depth of penetration data are normally presented as P/D,
where—P—iﬁs »thglgr,ater radius and D is the equivalent spherical diameter of
the penetrator, Equatioz( 7b) is used to relate a to D of the penetrator. Thus,

me = I £0?

‘,-/ali
o ’
so that
215 [ \’
L R AR
‘ NEECER R S
or fer p%: p " and ¢<° 0%,

6 = 12U,
¥ Based on the results of the one~dimensional analysis.
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Hence,
Fo= ke o R -2 AR (53)
D D afr2 a

These values are also given in Table 4.

TABLE 4 - NORMALIZED DEPTH OF PENETRATION FOR VARIOUS
_IMPACT VELOCITIES (0" %= 0.3/ jle; '

£ v 2 Re/3 i)
0.35 216,000 71 3.45 4.14
0.40 172,000 b 3.‘10 3.72
0.45 136, 000 ol 2.70 3.24
0.60 60, 000 49 1.80 2.16

Figure 13 shows the relationship between P/D and V for 0~ values of 0.01
and 0.1 Mb. As expected, the higher yield stress yields the lower depth of
pentration. However, a 10-fold change in 0-*, does not affect a correspond-
ing large change in depth of penetration. This follows from the shock velocity-
pressure relationship; that is at low pressure levels, a small change in R
gives rise to a large relative change in pressure level. Hence, even though
the relative change in pressure may be large, the corresponding velocity (and

hence 3 and K. ) difference is quite small.
[

The data orfﬂFigrure 13 follow a power law relationship
e v’
U
where & =0.56 1 0.03. This agrees very closely with the 0.58 value quoted

by Walsh based on his extensive machine computations.

[ U U
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4. CONCLUSIONS

1. The series solution technique provides a useful means for describing
the hydrodynamic phase flow-field during a hypervelocity impact without the

necessity of extensive computer codes and calculations.

2. Using simple Hugoniot data to provide the necessary material property
data, it is possible to easily calculate the target’s spherical flow=field while

accounting for

a. continuous energy deposition
b. variable shock density

¢. penetrator compressibility,

3. Based on the calculation presented and its specific cratering-cessation

simple penetrator energy scaling (4= 2/3) or momentum scaling (¢ = 1/3) is

not appropriate and that both quantities affect the crater size (of course, along

with target strength and other properties, i.e., ¥ ,& ,4,¢, and £° ).

| ' ' criterion,the penetration~velocity exponent is 0,56 £ 0,03. It appears that
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APPENDIX

The derivation of the zeroeth and first-order series coefficient is pre-

sented herein.

A.1 Evaluation of Y, (t)

A strongly non-linear second-order differential equation for Yo is obtained -
by solving three equations relating ﬁ (0,2), R, ,and Yo . A Simple an-
alytical solution for Y, is not possible and a useful approximation is obtained

based on a numerical solution of the differential equation.

From Equation (32) evaluated at the shock front, i.e., 7 = ’F.t

folot) = Limee)+ Lo omt (A1)
nl

In complete analogy with the one-dimensional analysis, it is convenient to con-

sider M¥as e->0. Then, from Equation (10),

L@M’: [R "'Q.]

E"0 éd’o 3
= £’
eaa? [(R ff'é' ) @ ] 7 V(AZ;’

u

L (R2-a3) |
3 (A3)

The pressure shock condition, Equation (20), ﬁelds

Imf jum )DQ(R "CR : : I

€70 €20

Lime (e Be oy = s P [(Rgeezf.-)_c(enﬁu.-.i], (A¥)

€0 e.‘,g

or

; x o ’ 2 .
fi’,'; A= i f(mt2) = 20 (R cR)
RSN s T T o

Al
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i | . : . :
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Hence,
Blot)= L7 (RI-cR)+ Io [ﬂ(&’*af)]- (Ac)
J Y:)l 3

Two additional equations between Y, , K; , and £ (0,2 ) are obtained from

the target-modified-i)enetrator interface and shock velocity conditions. Thus,

from Equation (18),

Z .
2| = 2T s Flot)
JLTot M p ‘
;ﬂ; + glr:‘e PR = -—2.7;‘ r°+r(ot)£+,a« * ’_’jg F] . es
;t‘/o/t -;4—-;( | I ) (ﬂ(f ) {;{O/t)é‘* )) (A7)

so that, equating coefficients of like powers of € ,

o= 22T re 4 (o)
Me
or

, - =M
oe) = "~ 2L 1o, .
ﬁ( 277' r;l- (AB}
The shock velocity condition, Equation (19), requires that

v

1* = R-¢
£

or,since ¥

i

cAay!
gt(!}ﬁ."t 7

. : {AQ)

Y-O*ii}e Fror = (Ro*gzéi’"') ~ &
CARE ;
Since Equation (A9) must be true for all values of € , it follows that

£
and, applying the initial conditions implied by Equation (14), i.e.,




gbzgi—ﬂka—at<fti~wg1 (A na;

R, = & rs +ct—-(.4‘"—i)a. {(Auej

Equations {A6) and {A8) lead to a second differential equation in Ys and Ro; viz.,

.

T 5/ 3~ 3 - . .
— [L‘\R" a°) + E%] + ,/i.. {R;L-'C-Ro) 0.

‘Aiz)
r;.zz- 3 b ‘; —é ' ’

Substitution of either Equation (Al1la) or (A11b} into the preceding expression
leads to a non-linear, second-order differential equation in either K: or 1
In both cases the resulting differential equation is matheinatically formidable and

does not readily yield an analytical solution. An analytical approximationfor Yo

is obtained from a tedious numerical solution of the exact, highl, non-linear

differential equation

\((; g};f'*!_, ‘ A P 3 g : L .
R er A ey MY DU CPEL P SRR
#8 3 ;.':TJ

Figure Al illustrates the numerical solution (&£ =1.25, < =20, 000 ft/sec,

C’/’Z =0.04, and & =0.01 ft) and the analytical approximation

sty |
g Y= (¢ —~ )

R e

Equation (A14) is precisely that which would result if the shock density is

assumed constant. That is, if the shock expressions given by Equations (19)

and (20) are replaced by

»*¥ = (\ré)é (Ais
v}

AR NDLY
(A

A3
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the shock conditions utilized in the Part I analysis, the differential equation
for Yo is given by

rnoz-3nt (A7)

————————r &

Yo

The solution, subject to the initial conditions
h=a
= Ve

is

..Y_:.G. :<‘+-§:££0t)’/7'

& 14
Equation (A13) reduces to (A17) when _{ =1 and { =0%

The approximation given by Equation {A14) does not reflect the effect of the
targef material properties . { and ¢ on Y, . However, analogous caléulations‘
for the one-dimensional case with a compressible penetrator and a variable shock
density yield an analytical solution for %, , the leading term of the particle po-

sition series, which can be used to ascertain the significance of andc/f@f It

is found that 2, // ** is relatively insensitive to variations in these parameters
(see Figure A2). Furthermore, the case where { =1.25 and C/’% =0.04 lies

approximately in the middle of the spread due to the large variations in _58 and

/-

For the spherical flow case, the difference between \;/q for § =1.25 and<¢/7;=0.04

* In both derivations, the term (%ﬂ- £:a3 )is neglected relative to F°v.3/3
5 .

** In the one-dimensional rigid penetrator analysis, £ is defined as /m; JAP
(see part I). When the penetrator is considered compressible, | = Me/qpe

where Mp = Mp/g.
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and Ta/a for d =1 andC/% =0 (this corresponds to the constant shock density case)
is srmaller than the corresponding difference for the one-dimensional case so
that the overall spread due to the/.&/ C/r_ variation is also smaller in the spherical
case. Hence, based on the one-dimensional calculations which illustrate the
relatively small effect of { and ¢/#, on Z.//, and the even smaller spread for the

spherical case, the expression for \; given by Equation (A14) is assumed valid

AL o cemam Py § M 3
tne range in d o) S f a2l interest e., (4 ‘—/"f.

M
vi vy s e g\ S,

Q

ati

2

- i P F U e e~ -
in spherical flow ovex

M

p"u\.
%

varies between (1,0.015) and (2,0.10), It should be emphasized that even though

the expression for F, does not contain < and ¢ , the shock term, K. given

by Equation {(Allb) varies markedly with these parameters.

Higher order accuracy in the ¥, approximation can be obtained at the expense
of analytical simplicity. However, based on the previous one-dimensional analy-
sis and this part of the spherical development, itis apparent that a less sinﬁple
representation for ¥s would lead to mathematical complications which w ouI;i re-~
strict an analytical development through the first order series terms. Thus,
Equation (Al4) represents a compromise between analytical exactness and com-
plexity which adequately depicts the leading term of the particle position series
over the times of physical interest, i.e., g ¢ 100. Further, the leading term

of the shock position series (Equation (A 11b) ) comprises &f, and ¢?, so that

any inaccuracy in Y, -is even less significant in the R term.

A.2 FEvaluation of ﬁ;’?{‘ﬁ}

Substitution of Equation (A8) into Equation (32) yields

Limz)=~-"o (ma+ L)
2 257 ¢
ro A
*¥*The range of ,& 1s between 1 and 2 . The bulk sonic velocity, ¢, is of the or«

der of 15,000 to 25,000 ft/sec, while % is of thc order of 250,000 to 10° ft/sec.
Hence, c/‘b’ may range from about 0.015 to 0.10. :

A7
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so that, by means of Equation (A14),

- R 754
I | o= . Iy ’ / #f
ﬂi”"'.fw"% (m+*

Using Equations {7a} and (8), this expression can be put in the form

. ‘7/" l
fntj = (ﬂ_zg)ﬁ 2 ah } i)

where

§ h= 1+ 27 _ |+ w__’th__ ‘! a
| Me Y P a

A.3 Evaluation of ﬁ(’fm,t}

The leading density coefficient follows directly from Equation (33) once
9@(‘.)is known. This function is derived in precisely the same manner as de-
tailed in Part I, with the exception that now the shock density is allowed to

vary. Thus,

I Ay
bimi= 9. [rm)] = £ [n’%‘] , (Aze)
[zm,

where 77’&} is defined as the time at which the shock front reaches particle 7m

for an impact with £ 0. That is, - . : : . e

m (7) = ).fwxu ?ﬁ* = io'[kaf(,‘./‘_’a.Z]. : : ('AZ)}
3

€70

From Equation (AS5),
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ﬁ*( 7’ ) is obtained as follows.

Substituting Equations (22) and (45) into the right side of Equation (21) yields

. PP s -
P (EEN(E)

or
X + - € IK‘) ¥ /K
PU LN EENT s b (a3
£ \J"é’ / t "é‘ !
i
where
.- 3 i T, | K/K
bg [ s = 5
(,wf’-) , (A7,

It is assumed that Equation (423) can be expanded as

¥ )
LR a2 (AR
£ =

~

N .
) (b,*b;é%r--—) (Pzs)

b(€) T b, +k, 2+ ,
( < . A2

Taking the limit of Equation (A25) as¢ > 0, it follows that

- * ¢ ¥ [ oo : VK
;{:’;’ % “i: b, = é:g_ [é,‘m-cmﬂ] /bé} (h27)
where, from Equation (A25), '
Yl ax
‘ (Az8)
Combining Equations (A20), (A22) and (A27), there resulits
57
T (h29)

-3

7~ .2 *
o[- oo Ll% (% Gew- < Refrio])

A9
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To evaluate Eqguation (A29) it is simpler to work in terms ofg (7)and h(f‘.’)).

Thus, from Equations (A1lb) and {A14), the term in brackets is

-

_.C.R (r) g = J0°(,¢?> Y“aﬁ\-cf,)

- S 3
:f{_ agf’rz}fC a(?r)?

,
>
[T

Again from Equation {(A11b) and the definition of g,

/e (h31)

Hence, Equation (A21) can be written as

3 —_—— T

a? !

mir) = P”a’{Rf[ﬁ(T)]

ﬁ(a = L 5\\-,} — —11
PP? T 3 J

Lastly, from the definition of h, Equation (A19),

mw = d (h )
)aJ /2—3% /7
sdthat 7
= 12-3¢/ "
o
and,

_ 1 -za la.73% 2
h(a)=hImgl= 1223 [ TRA 32 T
» . (Au‘}

*Note, h(g) is analagous to m {  }. Thus, g{n) is defined as the generalized time
{(g) at which the shock front reaches particle kh = 2~ 3%6_;_ )+| » for an impact
with € =0, F

i - - i h . " ' B g .
1 i ; i '
1 i . i ¢ .
i B ' ! :

~Alo




The function obtaimed by solving Equation {(A32) for g as a function of h, i.e., g(h),
is then substituted into Equation (A30) to obtain the desired function of h and
thus ‘m .

rtt.;uartion (A3Z)1s shoﬁn plotteé in Figure (A3) forthe >tw¢7> broundi;:rxg;éé.e. 5 ;f |
( 4 , /v, ). As can be seen, the curves differ from each other but each approxi-
mates gs/f behavior for moderate values of g.* Further, since Equation (A30)
must be raised to the ke : power (see Equation (A29) ), which is generauy of
the order of 0.1,any deviation from % /4 behavior is minimized. For example,
if the expression given by Equation (A30) were off by as much as a factor of 2%*
the resultant error in 90(@)35 given by Equation (A29) would by only 7% . Hence,

it is possible to represent g(h) simply as

g(n) = [, ¥/3 | (433)

without introducing any significant error into the analysis. The factor £ varies

with (,&'C/’g)as illustrated in Figure 5. The values of £ for the two limiting

cases follows directly from the approximating straight lines depicted in Figure A3.

Intermediate value curves are approximated in the same manner and correspond-

—ing values of % evaluated.

|

* This forr? 1s suggested by Equations (A31) and (A32]. For small g, Re/a <« g'f"
an? h« g . For large g, k,2<g, and h o g3. Thus, h ranges from g3/4 to

1 beha\nor as g increases. ? nce, § is never truly a constant. However,
for the range of g of interest, g°/fis a good representation of h(g). Of course,
% is a function of £ and ¢/7,

*%A deviation of this magnitude could occur only at g values of 100 or greater
and at the extreme of the ¢ range. For most substances and for g values
up to 100, the deviations are generally much less.
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"Equation {A8), a second expréssion for f£{ozjis

From Equations (A29), (A28), {(A30), and (A33), it follows that

ape (7 RT L, - 3/2 - $/¥ %
G (m)=7 F° {,Aaa, b rcuh z . (h29)
Hence, combining Equations (33), (A18) and (A34),
. . 1 ' u | }
v v M - U |
f = ra / ] -
)D\’m } ,P (u 3%) (C) (A!z_ﬁ-”;l h - l (Azg)

A.4 Evaluationof Vi (m, %)

Reference to Equation (34) shows that once 01 { ¢)=X¢j(see Equation (38b) )
[}
is specified, r"'n;;;, is determinate. The procedure for evaluating /( is identi-

cal to that for Y,

Equation (35) evaluated at the shock as € =0 yields, using Equation (34)

for Yi(m+t} and Equations (A3) and (A4),

F 3.3
——;—(R‘u -L/ J’O{R 3_/;
- = o FF Y
ﬁ{é “’"—(J?RP LF '—-Zra ‘ i aw ‘} e /r-,"’ Tad -
—’ f-;«-—-—")(; Am 4+ = [ I K /'5’
oy L) A nhoed| g T de. (A%
- . 3 -
7—7-V:;‘ T - - - L\ J
x
v Say | IZ

From the target-modified-penetrator interface condition, Equation (A7), and

#(9,t) - ___‘Aji ‘I-—- Xs_ e .{’3 X;\\\(

JSRATIN I (#37;
27\ 2r” N)"a’/ (R37)

Another expression relating F, and {, follows from the shock velocity condition

evaluated as € -» 0. Thus, from Equation (A9)
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so that

7 ~ ; - — L ‘e ~
1 ! /o { W 14 ; - i
g v -; ~~"“':/ z . v = Ain (} . L i a7 4 / f, y {
£ - (X A I & V4 & § -
& 25 - £ % J ¢ (o ] Fowe
- -

v

P -3 ;.
3 (%o ’3.3)
. R e * -
f;t (oejdm i = R
e <
| B DRSPS |
*
A

Equations {A36), (A37), and (A38) provide two simultaneous differential

equations for K, and X; . Before discussing their solution, the evaluation of

A.4.1. Evaluating the Integrals

The three integrals each require the calculation of

m o o, 3 h
(ﬂ__ dne = ¥ %. ‘Cu'i
Jo AV r2-3q | A )
i

Since Y, is independent of M and % "7 ¢ is separable in “m.and 1, the

integration of Equation (A39) is, from Equation (A35),

™ A0 34 Tr
f g & n /e h \EY
Rr.* iy aft,
6 x A¥o T /

(A3

(A#2)

Al4
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For arbitrary ,@/c/z@, ¥ and ¥ this expression is not readily integrable in
closed form. However, the term raised to the Z‘% power is insensitive to
variations in & and ¢/¥, (which determine § ) and can be represented ac-

curately by

T AR <4 -
Gr HE = = - /{2 h -
\L%n sy S (A

. - F_, '.;r
where A2 and 2/ vary only with %—g . Figure A4 shows the variation of 6wy
with h for a wide range of .£ ¢/, values. As can be seen, the large variation

I 4

in A, ¢/v.causes little spread in the curves which are well represented by /(2 h .

The varia tion of [, and 2/ with

?{{(? is shown in Figure 6.

With this simplification, the integral of Equation (A40) follows as

where
A= L+ (A3
3 {AY3)
The other operations involved in I}, I2, and B are straightforward.* The re-

sults are

raTe (Avy)

* To carry out the integrations, it is expedient to change the variable of inte-
gration from m to h. In so doing, m (7 ) is replaced by h-{ ] ), where the
approximation (see Equation (A33) )

h(3)=h[ng] = gsﬂ

is used.
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." ’ *# 2 ’ L7 0 ‘
IZ = VJ (‘? _2":‘ q a\ D 3— Y\ ¥ } ypa,l.'i ’ . / 3’,"3
- — e ) — - % + 77 . -1} p ,
: LiA v o3, Loin :
A SV TN AR 1 i A VA -T2 S AV A
l IS -\ 7 2/2: ¢ %b& il —! J; ) {A%)
where
Lo 3 b3
Iy 4 g.- :
l Tl“ V/f;LV'Kz T / .'tg,g_i..zx-‘] * . \
Z-23 (F-faw=iy - no o+ 171
| T; i
l /
' (12-3g) \i2-28g9 )/ e}
l A o7 \ 4 *
I A.4.2 Solving for //, £ K,
Substituting for R, by means of Equation (A38) yields a differential equation
l for X, :
' MP/)}' F Sra R o a |
| Xy o2 ZRy- e T+
| T \zne 7 \ =P (2R Ta 4k ) -2 ] {(£47)
Substituting for Ko and Y. and its derivatives (see Equations (A10) and (A14) ),
l i and using the integral expressions, Equations (A44), (A45), and (A46), this
l equation reduces to
- o (25
- I L , I
l ’éll)fgg 1)( + r‘f_o c > 3 %4 y
o \\—T‘A—AJGd} ] ,‘{,‘ '4‘
l , 2470 4 2- .
! v ol i \ .
i I'4 - % 4 X e jt (% 3 & .
l Gi-29)a | i (A¥8,
,_! S - . L ALT




where
fla =z 7, - AL -8 ) g Z wPa {i-2 "0 5
((9)= 2 SGTRF /4—;7»[ a_(i-2 "9
Wi A (-) ¢ L (x‘d:,g 6\ J ¢ o u‘ Jg ¢ v dl7 ¥
-—12'3/:’*"' -f-zifﬂ,j"‘"”). (A¥e)
A

Equation (Aéa) can be simplified by changing the independent variable -

i3 1 = (Asoa)
X, =X nv.® 5
a2 {f’-};gép}

and dividing by

2] 2 PN
- g DG FS T -~ . ".f" / - s - R 3 4',{31 5
/63 A "ﬁ"‘ 97" 12297V #e M E G2-3gia TS0 2t s (A::
* ‘;’FG 2;—;3-{1 Bry-5 -2 /

If the coefficient of X, is proportional to g, Equation (A51) takes the form

of the eqmdzmensmnal linear equation or Cauchy's equatmn and is readily solved.

7 Thls is mdeed the case. as is 111ustrated in Fzgure AS, where the expression

¢ -

P i e A G 7
7l +- A

is plotted as a function of g for the limifing cases of ,8, ¢/'#%. Hence, it is pos=-

sible to replace the multiplier of X , by4 ffs g without introducing any significant
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error into the analysis over the range of g of physical interest.

Thus,
- . :/1-31f Ty -3/
12~ 2 _Q_ “ /4,‘ . ~ I .
(12 ‘3)(%% +2.49 ) a:(lz—sg)h’sﬁa‘ 4’/<33 hezy
or
Hs . LA o (AS3)
4

4
where the variation of N3 with ‘é/ /i is shown in Figure 7.

With the preceding simplification, the differential equation becomes

2" . .
167K+ 4K33 4" + id = fal3) (As4)

"j R

a form which readily yields an analytical solution. Thus, for the appropriate

boundary conditions (see Equations {(14) and (15) ) 5

X’(dﬁ\} - O A e
ook . (N B #
V"‘ a'- - 7 .
X ol =%, (ASSb)

the solution of Equation (A54) is

. 1 e T P
SN Ul N G D N N BN B EE R B

- _ o T, , | S L |
— e 39 [CJM (ezbng) + Cz@w(wf@gzﬁj « B Ly sy
: . o= . 7

where the constants W, I &, e, and the jg. ‘s and the ,[s are de-
‘¢ # re

7/

fined as follows:

1. UR &£ i.)r
gz L (i-a
k= 5 (mozsi) (A7,
B < 3,A<o,37.stt.,@g".)‘ii- o S
(A576)
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2 -0 4 2 - 3 4025 (As8a)
3 o 2
—9.5 + £ o
) 7 e (ASE D)
£ - 3 0.2 5 T
RTINS (hssc)
- T
- T 3.£& -+ L 5 O,Z: ) N
iy 7 v (A s8d)
3 - 2
- = 0.3 - - 6.25 )
] ! t T (hoBe;
';: + % + 0.28 4 (Asad
r
C.25 4+ = _ 3 3. A5
rodn T AF (Assg)
A Z.L.
e 2;‘-(0—0.25“;(3”;& +0. 375 (Asa)
“v P (Rioa,
Ti-1
(23’1“’)ﬁ o
(Acon;
~ ¢ (Acac)
'V .
24 (-C—_ﬂ) b (A sod.
-8 (ALoe
b (A ¢od)




|

‘ ‘ A ‘ ‘ ‘ - T,
‘ 0 T T T T T T T T T T :
| i X

and
¥-! =X
- 1z ¥ /N KY X i—z\/i«é) 4i
b= 5 [;z—?%] (7) (zf,—l) {6+( LN (<)
- -
12 f Yo\ T N
§ (12. 33 ) Mz () r(a’.»: (ﬁf _‘2) (Ac2)
8’ = - é :‘ ZA‘-S"»;;
'3,
- Z L 4 - . ¢ )
Ciz “—_)z: {]20&(76!4‘5 cfiu\wR Jc)}e {A&gbj

R. follows directly from Equations (A38) and (A46) as, since R, (¢ )=0,

A22




A.4.3 Calculating vi{m. t)

Using Equations (A42), (A35), and (A39), the expression for r.m,t)}

Equation (34), reduces to

B P - S 14 N Fe-E) oo
himi;= #ab2 [c\KE/ 1z ¥, 9 ( h = ‘> . X e
(=-sgy \ 7 232 vf,—i) - ', (Ass)

e n T T e A
;

. I [ . E :

-
|
|

where X,(t) is given by Equation (A56).

A.5 Evaluation of ﬁm £}

This coefficient comprises two terms (see Equation (35) ). From

Equation (A36),

¥ ¥

ﬁ{g,i;f.fi(zﬁw.-cé,} -+ T.

where Ifanrdrlf are given by Equations (A44) and (A45). The second term of

 fimt) s

. g™ e

2T, ( . 1/ _

Ndam - = | 2*n 4.
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o
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where
T, = -¥ g (E-a
B~ ol (DT 975, Aim)
|
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